Water Quality Monttoring

From Satellitte Imagery

A Case Study in Hong Kong

Link to deliverable (ArcGIS Dashboards): https://www.arcgis.com/apps/dashboards/3b1a7e3a7ea640a1a2b2338cd774520a Presented by: GRM-PC-517

13 Jul 2024 CSDI Awards 2024 (Category 4)

Contact us: khoyinivan@link.cuhk.edu.hk

Total land area of Hong Kong: 1114.6 km² Total sea area of Hong Kong: 1640.4 km²

(Lands Department, Jan 2024)

Conventional monitoring methods

Source: Environment and Ecology Bureau

Source: Annual Marine Water Quality Reports

Environmental Protection Department (EPD)

- Regular water quality monitoring programme since 1986
- Monthly water sample collection at 94 locations
- Release data as annual reports

Earth observation satellites

Source: <u>Hafeez et al. (2019)</u>

Water quality data from CSDI Portal

ごごこの
 ごごこの
 ごごこの
 (本内)
 <

Station name (x-y coordinates)

Measurement date

~

Values of different water quality parameters

Two parameters selected in this study

- **Chlorophyll-a**: measurement of photosynthetic pigment, algal production and red tide
- **Suspended Solids**: related to sediment transport, nutrient cycle and water clarity

Source:

https://portal.csdi.gov.hk/ geoportal/?datasetId=epd _rcd_1631502576516_76 070

1	А	В	С	D	E	F	G
1	Water Control Zone	Station	Dates	5-day Biochemical Oxygen Demand (mg/L)	Ammonia Nitrogen (mg/L)	Chlorophyll-a (µg/L)	Dissolved Oxygen (%saturation)
2	Deep Bay	DM1	22/1/2022	0.4	0.48	2.2	113
3	Deep Bay	DM1	18/2/2022	1.2	0.49	2.1	76
4	Deep Bay	DM1	9/4/2022	0.9	0.24	4.1	88
5	Deep Bay	DM1	20/5/2022	<0.1	0.63	2.4	83
б	Deep Bay	DM1	13/6/2022	3.1	1.2	45	63
7	Deep Bay	DM1	15/7/2022	3.6	0.088	14	123
8	Deep Bay	DM1	12/8/2022	1.2	1.2	3.5	88
9	Deep Bay	DM1	14/9/2022	1.7	0.28	9.7	86
10	Deep Bay	DM1	13/10/2022	0.9	0.33	б.4	87
11	Deep Bay	DM1	9/11/2022	б	0.56	4.3	65
12	Deep Bay	DM1	8/12/2022	0.8	0.42	2.7	65
13	Deep Bay	DM2	22/1/2022	0.4	0.28	2.2	67
14	Deep Bay	DM2	18/2/2022	1.1	0.2	2.6	81
15	Deep Bay	DM2	9/4/2022	0.8	0.12	9.2	86

GeoAl model

Artificial neural network (tensorflow.keras.Sequential)

• Predict water quality from satellite image variables

- **Training:** Develop model based on matched data on the same date
- **Testing:** Evaluate model accuracy using cross-validation
- **Predict:** Apply model to all images to produce distribution maps

Model accuracies based on a 10-fold cross validation

	R	RMSE	MAE
Chlorophyll-a	0.606	3.95	1.98
Suspended Solids	0.526	6.46	3.04

Details of the methods are published in a journal article written by the author: *Frontiers in Marine Science, 2022*

¹ Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
² Institute of Future Cities, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China

🔍 Ivan H. Y. Kwong^{1,2*} 🔍 Frankie K. K. Wong¹ 🔍 Tung Fung^{1,2}

Example of modelling results

Imagery on previous dates

Imagery on following dates

Chlorophyll-a (µg/L)

Suspended solids (mg/L) 15

1

Summary of proposed method

- Develop a geospatial framework to automatically retrieve different water quality parameters on a territory-wide scale for marine waters in Hong Kong
- Integrate 1 satellite imagery, 2 field-measured data from CSDI Portal & 3 open-source GeoAI models
- Present the spatial & temporal patterns of water quality using 4 a map-centric interactive dashboard

Deliverable – Interactive GIS Dashboard

Dashboard Link: <u>https://www.arcgis.com/apps/dashboards/3b1a7e3a7ea640a1a2b2338cd774520a</u> (Snapshot on 25 March 2024)

Potentials of the project

- Deliver timely predictions based on continuously • updated satellite imagery and automatic workflow
- Develop as an early-warning system to detect water quality-related events and inform actions

Further increase monitoring performance by combining commercial data sources from satellites to drones

To government departments:

- Complement conventional methods to enhance efficiency
- Integrate with other emerging smart technologies to move towards a smart environment

目的

To public users:

- Provide an intuitive platform to navigate water quality distributions and trends
- Raise awareness of environmental changes with human activities

Future development

- Although this project cannot directly forecast our future
- Historical and current data, seasonal patterns & annual trends serve as a foundation for predicting future events
- Recent example: Beach Water Quality Forecast System by EPD in 2023, considering relevant environmental and hydrometeorological parameters to provide daily forecasts and early warnings
- Technological advancement in GeoAI & deep learning algorithms, together with the increasing volume of satellite and *in situ* data for model calibration, can potentially enhance the prediction accuracy in future

Winter (Dec-Feb)

Autumn (Sep-Nov)

Source: Figure 5 in Kwong et al. (2022)

"Learn the Past, Watch the Present, and Create the Future."

References

- to

Key reference:

• Kwong, I. H. Y., Wong, F. K. K., & Fung, T. (2022). Automatic mapping and monitoring of marine water quality parameters in Hong Kong using Sentinel-2 image time-series and Google Earth Engine cloud computing. *Frontiers in Marine Science*, *9*, 871470. <u>https://doi.org/10.3389/fmars.2022.871470</u>

Government webpages and documents:

- Environmental Protection Department. (2023). *Marine Annual Marine Water Quality Reports*. <u>https://www.epd.gov.hk/epd/english/environmentinhk/water/hkwqrc/waterquality/marine-2.html</u>
- Innovation, Technology and Industry Bureau. (2024). The Environmental Protection Department uses drone, robot and submarine to investigate water pollution issues. <u>https://www.effo.gov.hk/en/our-work/success-stories/environmental-protection-department-uses-drone-robot-and-submarine-to-investigate-water-pollution-issues</u>
- Legislative Council. (2023). Application of Advanced Smart Technologies in Water Quality Monitoring and Modelling, and the Improvements of the Marine Environment of Hong Kong LC Paper No. CB(1)131/2023(05). <u>https://www.legco.gov.hk/yr2023/english/panels/ea20230227cb1-131-5-e.pdf</u>

Other related research studies in Hong Kong:

- Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., ... & Pun, L. (2019). Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: A case study of Hong Kong. *Remote Sensing*, 11(6), 617. <u>https://doi.org/10.3390/rs11060617</u>
- Nazeer, M., & Nichol, J. E. (2015). Combining Landsat TM/ETM+ and HJ-1 A/B CCD sensors for monitoring coastal water quality in Hong Kong. *IEEE Geoscience and Remote Sensing Letters*, 12(9), 1898-1902. <u>https://doi.org/10.1109/LGRS.2015.2436899</u>

Scientific studies and reviews of the technology:

- Ritchie, J. C., Zimba, P. V., & Everitt, J. H. (2003). Remote sensing techniques to assess water quality. *Photogrammetric Engineering & Remote Sensing*, 69(6), 695-704. <u>https://doi.org/10.14358/PERS.69.6.695</u>
- Wang, X., & Yang, W. (2019). Water quality monitoring and evaluation using remote sensing techniques in China: A systematic review. *Ecosystem Health and Sustainability, 5*(1), 47-56. <u>https://doi.org/10.1080/20964129.2019.1571443</u>

Supplementary materials:

• Kwong, I. H. Y. (2022). Marine Water Quality in Hong Kong - Time Series Estimated from Satellite Images (2015-2021) - GitHub repository. https://github.com/ivanhykwong/Marine-Water-Quality-Time-Series-HK

Acknowledgements

Satellite imagery data (slides 2, 4 and 7):

- Landsat imagery from the U.S. Geological Survey (https://www.usgs.gov/landsat-missions/landsat-data-access)
- Sentinel-2 imagery from Copernicus Sentinel mission of the European Union (https://dataspace.copernicus.eu/)

Figures used in this presentation:

- Slide 1 Artist concept of Landsat 8 (https://www.usgs.gov/media/images/artist-concept-landsat-8)
 - Victoria Harbor in Hong Kong (https://www.pexels.com/photo/victoria-harbor-in-hong-kong-15748373/)
- Slide 3 · 水質潔淨 樂在維港 (https://www.eeb.gov.hk/en/see_blog/blog20231125.html)
 - Annual Marine Water Quality Reports (https://www.epd.gov.hk/epd/english/environmentinhk/water/hkwqrc/waterquality/marine-2.html)
 - Efficiency icons created by Uniconlabs Flaticon (https://www.flaticon.com/free-icons/efficiency)
- Slide 4 Water color in different parts of Hong Kong (https://www.mdpi.com/2072-4292/11/6/617)
 - Landsat 8 (https://landsat.gsfc.nasa.gov/article/landsat-data-continuity-mission/)
 - Model of Sentinel 2 (https://commons.wikimedia.org/w/index.php?curid=41020894)
- Slide 5 Historical Marine Water Quality Data (https://portal.csdi.gov.hk/geoportal/?datasetId=epd_rcd_1631502576516_76070)
- Slide 6 Neural Network Illustration (https://towardsdatascience.com/video-analysis-with-tensor-decomposition-in-python-3a1fe088831c)
- Slide 8 Satellite icons created by Freepik Flaticon (https://www.flaticon.com/free-icons/satellite)
 - Water quality icons created by Iconjam Flaticon (https://www.flaticon.com/free-icons/water-quality)
 - Operating model icons created by Freepik Flaticon (https://www.flaticon.com/free-icons/operating-model)
 - Results icons created by Freepik Flaticon (<u>https://www.flaticon.com/free-icons/results</u>)
- Slide 10 The Environmental Protection Department uses drone, robot and submarine to investigate water pollution issues (https://www.effo.gov.hk/tc/our-work/success-stories/the-environmental-protection-department-uses-drone-robot-and-submarine-toinvestigate-water-pollution-issues/)
 - Legislative Council Paper No. CB(1)131/2023(05) (https://www.legco.gov.hk/yr2023/english/panels/ea/papers/ea20230227cb1-131-5-e.pdf)
 - Business and finance icons created by BomSymbols Flaticon (https://www.flaticon.com/free-icons/business-and-finance)
 - Government icons created by Freepik Flaticon (https://www.flaticon.com/free-icons/government)
 - Public service icons created by Job Moon Flaticon (<u>https://www.flaticon.com/free-icons/public-service</u>)
- Slide 11 Spatial distribution maps of chlorophyll-a concentration (<u>https://www.frontiersin.org/articles/10.3389/fmars.2022.871470/full</u>)
 - 環保署推泳灘水質預報系統 每早更新開放泳灘水質預測 (https://news.rthk.hk/rthk/ch/component/k2/1713567-20230815.htm)